CIRA Support for High Latitude/Arctic Proving Ground

Don Hillger, NOAA/NESDIS/STAR/RAMMB
Don.Hillger@NOAA.gov

(with contributions from Steve Miller, Bernie Connell, and Renate Brummer, CIRA)
Fairbanks and Anchorage, Alaska
18-20 August 2009
Outline

• Volcanic Ash Principal Component Imagery (PCI) applied to 5-band GOES Imager.
 – Started work with South American volcanoes for Washington VAAC
 – Continued with Aleutian/Alaska volcanoes
• Forward-model simulations of GOES-R ABI with smoke, and potentially volcanic ash
• Potential fog/stratus discrimination products for cold regions
• Additional PG products for detecting fires, snow cover, and low-light capabilities for observing aurora, low clouds, etc.
South American volcanoes

Analysis of Tungurahua volcano from 1999 for use by Washington VAAC
South American volcanoes

Analysis of Chaiten volcano from 2008 at high (southern) latitude
South American volcanoes

A second analysis of Chaiten volcano from 2008 at high (southern) latitude
Volcanic Ash Visualization

• Use of Principal Component Analysis (PCA) to create Principal Component Imagery (PCI).
• Use current GOES imagery at 15 or 30 minute interval
• Best predictor is split window (11 minus 12 μm) difference.
• Develop visualizations for the PCIs:
 – 4-panel combinations
 – 3-color combinations
Principal Component Image (PCI) Analysis: Volcanic Ash Enhancement

Analysis of Initial Okmok Eruption: Imagery for the Okmok (Alaska Aleutian) volcano eruption from 12/13 July 2008 has been analyzed thru Principal Component Image (PCI) analysis. PCIs extract dominant image combinations from the available GOES bands.
PCIs are combined in this image using RGB (3-color) analysis. The colors chosen to enhance the ash cloud, with PCI-3, 2, and 5 as Red, Green, and Blue, respectively. Clear areas in the image are deep purple, high clouds are mainly green, lower clouds are yellow, and heavily-ash-dominated cloud is orange. Note the higher concentration of ash in the plume south of the volcano vs. the plume east of the volcano.
A two-color combination similar to the previous three-color combination, but repeating one of the colors
Okmok Eruption: Blue-Absorption

July 12, 2008 2330 Z

The Proving Ground allows users to assess the merits of various algorithms in an operational setting.

(SME: Steve Miller)
Redoubt – 2009-03-23/0000 UTC to 2009-03-24/0745 UTC, with eruptions at 23/0638, 23/1230, 24/0341 UTC

GOES 5-band PCI-1 (LWIR-dominant)

GOES 5-band PCI-2 (visible-dominant)

GOES 5-band PCI-3 (SWIR-dominant – high vs. low cloud)

GOES 5-band PCI-5 (split-window - thin cloud - ash)

Volcanic Ash
Redoubt – 2009-03-23/24

RGB (3-color): Red = PCI-3, Green = PCI-5, Blue = PCI-2
Redoubt – 2009-03-23/24
Redoubt – 2009-03-23/24

RGB (3-color): Red = PCI-3, Green = PCI-2, Blue = PCI-2
(Note that both Green and Blue are PCI-2 in this case.)
Redoubt – 2009-03-23/24
Model-Simulated ABI

- Initial work to develop a true-color product for GOES-R ABI, by first simulating the Advanced Baseline Imager (ABI) “green” band.
- Forward-model simulations have just begun, to include smoke particles in GOES-R ABI data.
- Additional smoke simulations are planned.
- Volcanic ash (and other aerosol) simulations are planned.
- May lead to development of proxy datasets for testing smoke and volcanic ash detection algorithms.
ABI RGB (true-color)

ABI band-3 0.55 um (B)

ABI synthetic-RGB (true-color)

MODIS RGB (true-color)

band-4 0.556 um (B)

MODIS synthetic-RGB (true-color)

band-4 0.556 um (B)
Simulated GOES-R ABI with added smoke “patch”
Fog/stratus discrimination in cold regions

• Use of **10.8 minus 8.7 μm difference** demonstrated with Meteosat Second Generation (MSG)

• Example courtesy of Eumetsat/Bernie Connell

• One of many three-color products we are testing for GOES-R ABI application.
RGB24hcm 14 February 2008 01:25 UTC

- **Fog/stratus**
- **Cloudfree**
- **High-level Lee cloud**

Copyright 2008 EUMETSAT
Front Range Low Cloud & Fog

(SMEs: Steve Miller, Don Hillger)
Here, 2 passes per day may provide sufficient temporal resolution to provide useful information.

(SMEs: Steve Miller, Don Hillger)
GeoColor AWIPS PG Product at CYS and BOU

41 frames: 30 min interval from 26April2009 20:45Z to 27April2009 21:15Z
Detailed PG Product Descriptions available online

http://cimss.ssec.wisc.edu/going_r/proving-ground.html

How is this product created now?

Figure 2 illustrates the various components of the GeoColor imagery blending technique. In the foreground of this image are the GOES E/W satellite visible and infrared datasets (upper-most left and right panels of Fig. 2, respectively.) For this image, which spans the full Continental U.S., we have stitched together the time-matched (here, 0000 Greenwich Mean Time (GMT) on 14 September 2005) Geostationary Operational Environmental Satellite (GOES); East (hovering over the equator at 75°W) and West (135°W) are stitched together along the 100°W meridian. In this example, the eastern half of the United States lies in total darkness, while the western half remains illuminated by late afternoon sun.

Fig. 2. Illustration of the five primary components contributing to the blended GeoColor imagery. Click on figure for full resolution.

Natural or "true" color backgrounds require channels that are not available from the current GOES. To simulate what

Note: The Proving Ground is not a web interface. The information provided online is intended to serve only as a ‘menu’ and high-level training for operational users and the general public.
Nighttime Low-Light Capabilities for a “Satellite Proving Ground”
Both reflection and emission based applications can be exploited using the NPOESS-VIIRS Day/Night Band.

(SME: Steve Miller)
Ship Tracks Revealed by Moonlight
Active fires produce significantly greater smoke flux, potentially impacting nighttime visibility (T&D).
Nocturnal Lightning Detection

2/11/2009 ~0100 UTC

Near Anvil
Embedded

Dallas
Low Cloud Detection at Night: Complementary Techniques

DMSU F-16-OLS 12/12/2004 Nighttime COMPOSITE (2002 Local Time) HRL Monterey
Most Recent Addition: 12/13/2004 0015 GMT
Discrete Yellow = City Lights, Widespread Diffuse Yellow=Lunar-Reflection/Solar-Color
Blue=High Clouds, Gray Shades=Surface Elevation
SE=41.3° SI=0.0500 LE=35.7 LI=0.59 LF=0.7181 LE=1
Aurora Borealis
Conclusions

• CIRA has products available for Proving Ground testing in Alaska (Volcanic Ash PCI)
• PG products are being demonstrated online at http://rammb.cira.colostate.edu/goes_r_proving_ground/volcano_products.asp
• McIDAS code is available for re-working into TerraScan.
• Plans are to develop additional products with the high latitudes/arctic in mind.